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We generalize the univariate divided difference to a multivariate setting by con-
sidering linear combinations of point evaluations that annihilate the null space of
certain differential operators. The relationship between such a linear functional
and polynomial interpolation resembles that between the divided difference and
Lagrange interpolation. Applying the functional to the shifted multivariate trun-
cated power produces a compactly supported spline by which the functional can
be represented as an integral. Examples include, but are not limited to, the tensor
product B-spline and the box spline. � 1996 Academic Press, Inc.

1. Introduction

Denote the divided difference of a univariate function f at the points
x0<x1< } } } <xn by [x0 , ..., xn] f, and the n th derivative of f by Dnf.
We state without proof the following familiar properties of the divided
difference.

(1.1) If Dnf#0, then [x0 , ..., xn] f =0.

More specifically, if f is continuous on the interval [x0 , xn] and if Dnf
is identically zero on (x0 , xn), then the divided difference of f is zero.

(1.2) There exist scalars *(i) depending on [x0 , ..., xn] such that
[x0 , ..., xn] f=� *(i) f (xi).

Thus, [x0 , ..., xn] is a said to be a linear combination of point evaluations
on [x0 , ..., xn].

(1.3) [x0 , ..., xn] f=0 iff there exists a polynomial of degree less than n
agreeing with f on x0 , ..., xn .
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(1.4) M(t | x0 , ..., xn) :=n[x0 , ..., xn](}&t)n&1
+ is a nonnegative piece-

wise polynomial that is compactly supported and n&2 times continuously
differentiable.

One commonly refers to M as a B-spline.

(1.5) If Dnf is continuous on [x0 , xn], then n! [x0 , ..., xn] f=�R Dnf (t)
M(t | x0 , ..., xn) dt.

(1.6) If Dnf is continuous on the interval [x0 , xn], then n! [x0 , ..., xn] f=
Dnf (!) for some ! # (x0 , xn).

(1.7) n ! [x0 , ..., xn] f � Dnf (!) as x0 , ..., xn � !. This convergence is
accelerated if the divided differences are centered about !.

The divided differences and associated B-splines have been generalized in
many ways to a multivariate setting.

The simplest generalization to d variables is made via tensor products. For
1�i�d, let :(i) be a nonnegative integer, and let x0, i , x1, i , ..., x:(i), i be dis-
tinct points in R. Define }[x0, i , x1, i , ..., x:(i), i] f to be the result of applying
[x0, i , x1, i , ..., x:(i), i] to the ith variable of f for every i. One can prove tensor
product analogues of (1.1)�(1.7). For instance, in place of (1.2), we have that
the tensor product divided difference of f depends linearly on f 's values on
the rectangular grid of points

S=[x: \i, x(i) # [x0, i , x1, i , ..., x:(i), i]].

The nth derivative Dn is replaced throughout by the mixed partial

D: := `
d

i=1 \
�

�x(i)+
:(i)

,

and the B-spline is replaced by the tensor product B-spline

M(t | S) := `
d

i=1

M(t(i) | x0, i , x1, i , ..., x:(i), i).

Comparing the tensor product with the univariate case, in which
[x0 , ..., xn] are arbitrary, one sees its the primary limitation: the requirement
that the knot sequence S be a rectangular grid of points. Other generaliza-
tions of the divided difference and B-spline have done away with this require-
ment.

Introduced by de Boor [1] with an attribution to Schoenberg, the multi-
variate B-spline M(t | S) has been studied extensively by, among others,
Dahmen, Michelli, and Ho� llig [4, 6�10, 13, 14]. Dahmen [6] introduces
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the multivariate divided difference and multivariate truncated power and
proves identities similar to (1.1), (1.2), and (1.4)�(1.7). He replaces Dn by
a product of directional derivatives and makes no restrictions on S. In con-
trast to (1.2), however, the multivariate divided difference of f depends
linearly on not only f but also its derivatives. Though the multivariate
B-spline and divided difference satisfy an identity similar to (1.4), the spline
is a linear combination of translates of more than one truncated power.
This can be avoided, it seems, only if one places further restrictions on S.

Both Kergin [15] and Hakopian [11, 12] have studied multivariate
polynomial interpolation and, in doing so, generalized the divided dif-
ference. Kergin applies a homogeneous differential operator to a smooth
function and integrates the result against the multivariate B-spline [6].
He places no restriction on S. Hakopian [11] defines a d-variate :th
divided difference to be the integral of D:f against (: !)&1 M(} | S), where
|:|=*S&d. Analogous to (1.2), if S is in general position, then the :th
divided difference of a function can be expressed as a linear combination of
its integrals over lower-dimensional simplices. A similar result holds for the
Kergin functionals in case the homogeneous differential operator is a
product of directional derivatives [17]. In the interpolation problem using
these integrals as conditions, the generalized divided differences play a role
that reduces to (1.3) in the univariate case.

More recently, Neamtu [18, 19, 20] defines a divided difference of a
smooth function on Rd_d, and proves a (1.4)-like relation between his func-
tional, the multivariate B-spline, and a generalized truncated power func-
tion (different from Dahmen's). Neamtu proves certain recurrence relations
for his divided difference and therefore for the multivariate B-spline.

Along another track, the box spline, introduced by de Boor and DeVore
[2], generalizes the univariate cardinal B-spline to several variables; results
analogous to (1.1)�(1.7) hold when one replaces Dn by the product of
directional derivatives [5]. The linear difference functional depends solely
on the values of f on the finite point set S, which is required to lie on a not-
necessarily-rectangular grid with uniform spacing in each of its (d or more)
directions.

This raises the question as to whether one can obtain results like
(1.1)�(1.7) with a linear functional made up of point evaluations on S and
still allow S to be more general than in the box spline or tensor product
settings. To answer this, we replace Dn by an arbitrary product DN of
directional derivatives and define (Definition 3.1) an ``Nth difference'' to be
a functional satisfying the natural generalizations of (1.1) and (1.2).
Corollary 3.3 gives a necessary geometric condition on the support of any
Nth difference. The relationship between Nth differences and polynomial
interpolation generalizes (1.3); see Theorem 3.5 and Corollary 3.7. As in
(1.4) and (1.5), applying an Nth difference to the multivariate truncated
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power produces a compactly supported spline by which the functional
can be represented as an integral. Details are in Theorem 3.15 and its
corollary. Lemma 4.13 generalizes (1.6) and Lemma 4.14 and Theorem 4.15
generalize (1.7).

In addition, we prove other properties and characterizations of Nth dif-
ferences and the accompanying splines and polynomial spaces. Examples
include, but are not limited to, the tensor product B-spline and the box
spline.

We begin by establishing some notation in the next section.

2. Notation

The symbol S is reserved to stand for a set of finitely many points in Rd.
It is convenient to think of Rd as consisting of column vectors. Thus, letting
s� denote the transpose of s # Rd, the inner product of s and r in Rd is s�r.
For H a subset of Rd, we let H = denote the space of all r in Rd per-
pendicular to everything in H.

Let $s denote the point-evaluation at s, that is, the functional given by
$s f=f (s). For *=�S *(s) $s , the support of *, denoted supp *, is the set
of s # S for which *(s){0. Denote the convex hull of S by �S�1 , and
denote by �S�+ the cone [� x(s)s: \s # S, x(s)�0].

The letter N shall always stand for a matrix whose typical column is (the
nonzero vector) & # Rd. We shall borrow the following notation from the
box spline literature [5]: since the order of its columns is unimportant for
our purposes, one can think of N simply as a multiset in Rd"[0]. This
eliminates the need for indices other than the elements of N itself. For
instance, interpretting AB in the standard way, RN denotes the set of all
functions from N into R (i.e., the set of all real vectors indexed by N), and
the map N is defined by

N: RN � R: x [ Nx :=:
&

&x(&).

The space of all linear combinations of elements or columns of N, that is,
the image of the above map, is denoted ran N. The cone defined earlier,
�N�+, is just the image of [0, �)N under this same map. Let :(&) denote
the multiplicity of & in N, i.e., the number of columns in N that are identi-
cal to &;

The directional derivative in the direction & is denoted D& . Define

DN :=` D& .
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This derivative is said to exist if it exists unambiguously, independent of the
order of differentiation. For U a closed set in Rd, let CN(U) denote the set
of functions f for which DK f is continuous on U for every K�N; i.e., DK f
exists on the interior U0 of U and is uniquely extendible by continuity to
all finite boundary points. The space CN

c (Rd) shall consist of those
f # CN(Rd ) having compact support.

3. Nth Differences

We shall consider linear functionals which satisfy (1.1) and (1.2) in a
general sense.

Definition 3.1. Let * be a linear combination of point evaluations
with supp *=S, a finite set in Rd, and let N be a matrix whose columns
lie in Rd "[0]. We say that * is an Nth difference if there exists a closed
disk U containing S such that *f=0 for every f in CN(U) whose Nth
derivative DN f is identically zero on U0.

For & # N, define the relations x#& y and x#N y for x, y # Rd to mean
that x&y lies in ran & or ran N, respectively. Let (s :&) and (s :N) denote
the sets of t # S such t#& s or t#N s, respectively. Define the restrictions

* | (s :&) : f [ :
(s :&)

*(t) f (t)

and

* | (s :N) : f [ :
(s :N)

*(t) f (t).

Let &:(&) denote the multiset of :(&) copies of &.
For * to be an Nth difference implies that the restrictions above are dif-

ferences in their own right.

Theorem 3.2. Let * be an Nth difference with support S. Then for every
& in N and s in S,

(a) *| (s :&) is a &:(&)th difference, and

(b) *| (s :N) is an Nth difference.

If the columns of N span Rd, we shall say that N is complete. Part (b)
implies that, if N is not complete, then * is a sum of Nth differences with
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supports on lower-dimensional hyperplanes. Consequently, any statement
about complete Nth differences and their relationship to Rd has as an
immediate corollary a corresponding statement about incomplete Nth dif-
ferences and their relationship to these hyperplanes.

Proof of Theorem 3.2. Definition 3.1 requires that, if we wish to prove
(a) or (b), we first choose disks containing (s :&) and (s :N). For these, take
the disk U containing S associated to * by that definition.

To prove (a), assume that f is in C&:(&)
(U) and that D:(&)

& f=0 on U0.
Then there exists a univariate polynomial p so that D:(&)p=0 and
f (t)=p(&�t) for all t # (s :&).

Let Q be the orthogonal projector from Rd onto &=; then Qx=Qy if and
only if x# & y. Consequently, there exists g # C�(Rd) satisfying

( g b Q)(t)={1 if t # (s :&),
0 if t # S"(s :&).

The directional derivative D&(g b Q) is identically zero on Rd, as one can
check directly.

The product F :=( p b &�)(g b Q) is zero on S"(s :&), agrees with f on
(s :&), and belongs to CN(U). (In fact, F is infinitely differentiable on all of
Rd.) Furthermore, its Nth derivative is identically zero, since

D:(&)
& F=(D:(&)p b &�)(g b Q).

Therefore 0=*F=*| (s :&) f, proving (a).
To prove (b), suppose that f # CN(U) satisfies DN f=0 on U0.
If rank N=d, the proof is trivial, since (s :N)=S. Assume rank N<d.

Let Q be the orthogonal projector from Rd onto N=, and let g # C �(Rd )
satisfy

( g b Q)(t)={1 if t # (s :N),
0 if t # S"(s :N).

Then D&(g b Q) is identically zero for any & in N.
The product F :=f (g b Q) agrees with f on (s :N) and is zero on S"(s :N),

and its Nth derivative is identically zero on U0. Hence 0=*F=* | (s :N) f,
completing the proof of (b). K

For which sets S do there exist Nth differences supported within S?
Theorem 3.2 implies the following necessary condition on S.

Corollary 3.3. If * is a nontrivial Nth difference, and if supp */S,
then for every s in S and & in N, the equivalence class (s :&) must have more
than :(&) members.
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The converse is proven false in the next section.

Proof. It will suffice to prove this in case supp *=S, so that *(s)=0 for
no s in S.

Let * be an Nth difference with support S, and suppose that, for some
s and &, the set (s :&) has :(&) or fewer members. Then there exists a
univariate polynomial p of degree less than :(&) such that

p(&�t)={0 if t # (s :&)"s,
1 if t=s.

Therefore * | (s :&) p b &�=*(s). On the other hand, since D:(&)
& ( p b &�) is identi-

cally zero, * | (s :&) p b &�=0, a contradiction. K

Extending the above in a natural way to complex d-space, we can choose

N=\1
i

1
&i+ (3.4)

so that DN is the Laplacian. Corollary 3.3 then implies that there is no
nontrivial Nth difference supported in R2, since s # R2 implies that (s :&)
has only one member for & equal either ( 1

i ) or ( 1
&i) . There are, of course,

many useful discretizations of the Laplacian, typically a sum of Nth differences
for

DN=\ �
�x(1)+

2

and DN=\ �
�x(2)+

2

.

Let 6 denote the space of polynomials of d variables, and define 6N to
be the space of all polynomials p for which DN p=0.

For example, if N is as in (3.4), then 6N(R2) consists of all harmonic
polynomials of two real variables. The impossibility of a nontrivial
Laplacian Nth difference is also a consequence of the next theorem, since
one can always fit a harmonic polynomial to prescribed values on a finite
set in the plane.

Theorem 3.5. Let * be linear combination of finitely many point evalua-
tions on S. Then * is an Nth difference if and only if *p=0 for all p # 6N .

Proof. Clearly, if * is an Nth difference, then * = 6N . To prove the
converse, suppose * = 6N .

Let U be any closed disk containing S and let f # CN(U) satisfy DN f=0.
Since *f=*( f&p) for every p # 6N , in order to show that *f=0 it will
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suffice to prove that, for every positive =, there is a p # 6N such that
& f&p&<=, where & }& is the sup-norm on U.

The proof is by induction on the number of elements in N and uses the
density of 6 among continuous functions on any compact set [16].

Suppose first that N=[&]. Let u be the center of U and let

A: x [ u+\1&
&&�

&�&+ (x&u),

the affine map that projects U onto the the (d&1)-dimensional disk
U& :=(u+&=) & U. If f is in C&(U) and D& f=0, then f=f b A on U. Take
p a polynomial such that | f (x)&p(x)|<= for all x # U& . Then p b A # 6&

and & f&p b A&<=, proving Theorem 3.5 when N=[&].
For the inductive step, choose & # N, and assume that f in CN(U)

satisfies DN f=0. Applying the inductive hypotheses to D& f gives, for every
=>0, a polynomial q in 6N "& such that &D& f&q&<=. For all x # U,

f (x)=f (A(x))+|
x

A(x)
D& f,

where � denotes a line integral. Choose p1 # 6 such that & f b A&p1 b A&<=.
Define

p2(x) :=|
x

A(x)
q.

Then p2 # 6, and D&p2=q. Set p=p1 b A+p2 . Then p # 6N , and

& f&p&�& f b A&p1 b A&+"p2&|
}

A( } )
D&f "<(1+radius U) =.

Since the above is true for all =>0, the proof is complete. K

Since K/N implies 6K /6N , Theorem 3.5 has the following immediate
corollary.

Corollary 3.6. If * is an Nth difference, and if K/N, then * is an
Kth difference.

Define 6N(S) :=[ p|S : p # 6N]. The next corollary is a generalization of
(1.3).

Corollary 3.7. Let f be defined on the finite set S. Then f # 6N(S) if
and only if *f=0 for every Nth difference * with supp */S.
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In other words, *f=0 for all Nth differences on S if and only if there
exists a polynomial in 6N agreeing with f on S.

Proof. Since 6N(S) is a closed subspace of RS, it can be written as

, {ker * :*=:
S

*(s) $s , * = 6N(S)= .

By Theorem 3.5, this is

, [ker * :* an Nth difference, supp */S],

completing the proof. K

We say that N is a directional matrix and write N # Dd_m if it contains
no distinct parallel elements and if N satisfies either of the equivalent
conditions below.

(3.8) The convex hull �N�1 does not contain the origin.

(3.9) The elements of N lie in some open half-plane; i.e., _# # Rd such that
#�&>0 for all & # N.

For example, both of

\1 1 1
0 0 1+ \1 2 1

0 0 1+
satisfy (3.8), but only the first belongs to D2_3.

For _ in [&1, 1]N, we set N_ :=[_(&)&: & # N]. If N has no distinct
parallel elements, and 0 � N, then there exists at least one _ for which
N_ # Dd_m. Such a _ is called a normalization of N. Clearly, * is an Nth
difference if and only if it is a N_ th difference for every normalization
of N.

Next, we briefly review properties of the multivariate truncated power
TN [6]. For N a directional matrix the Nth truncated power, TN , is the
distribution whose inner product with any test function , is defined by

(TN , ,) :=|
[0, �)N

,(Nt) dt.

For completeness, define T< to be the Dirac $-distribution. Either condi-
tion (3.8) or (3.9) guarantees the existence of this integral.
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Clearly TN has support �N�+. Furthermore, TN is a homogeneous
piecewise polynomial distribution of total degree m&d. For example, when
the members of N are linearly independent, TN is the piecewise constant
distribution

TN(x)={ |det N| &1

0
if x # �N�+;
otherwise.

(3.10)

The smoothness of TN depends on N's ``degeneracy'': N is s-degenerate if
each of its subsets of cardinality d+s has rank d. If N is complete and
s-degenerate, then TN is exactly m&s&d&1 times continuously differen-
tiable.

If K/N, then

TK V TN " K=TN and DK TN=TN "K . (3.11)

In particular, DNTN=$, so that DN(TN V ,)=, for any test function ,. In
fact, for the convolution TN V f to serve as a Nth antiderivative of f, it is
sufficient that f be a continuous function of compact support, as one can
easily prove. We include this fact in the following lemma.

Lemma 3.12. Let N # Dd_m, and let f be a continuous function of
compact support in Rd. Then TN V f # CN(Rd), and DN(TN V f )=f on Rd.

(Note that, in the above, TN V f is continuous even in directions other
than those in N.)

We next combine an Nth difference and the truncated power to form a
piecewise polynomial (distribution) in a way that generalizes (1.4).

Definition 3.13. Let N be a directional matrix. For * an Nth dif-
ference with support S, define the (Nth) representer of * to be the distribution

M(t | *, N) :=*TN( }&t)=:
S

*(s) TN(s&t).

If N is complete, M( }| *, N) is piecewise polynomial function, having the
same total degree and smoothness as TN . Otherwise, M is supported on
hyperplanes spanned by N passing through S. As a consequence of
Theorem 3.2, part b (see the remarks thereafter), one need only consider
complete directional matrices in order to thoroughly understand the rela-
tionship between any Nth difference and its representer. For instance,
compare Corollary 3.16 and Corollary 3.17.
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Lemma 3.14. Let N be a complete directional matrix. Let * be an Nth
difference and U the associated closed disk containing the support S of *.
Then, for every f in CN(U),

*f=|
U

M( } | *, N) DN f.

Proof. Given = positive, let U= be the ball concentric with U having
radius = greater than the radius of U. Let F= be a continuous function on
Rd that agrees with DN f on U, is supported on U=, and satisfies

max
U=

|F= |�max
U

|DN f |.

By Lemma 3.12, TN V F= # CN(U), and its Nth derivative agrees with DN f
on U0. Therefore, Definition 3.1 implies that

*f=*(TN V F=)=|
Rd

M( } | *, N) F= .

Letting = � 0 and applying the Dominated Convergence Theorem yields
the desired result. K

Like the B-spline, M( } | *, N) is compactly supported. The next theorem
covers this in detail.

Theorem 3.15. Let N be a complete directional matrix. Let * be an Nth
difference with support S.

(a) If _ is any normalization of N, then M(t | *, N)=
M(t | *, N_) >N _(&), at all points t at which both functions are continuous.
(Since N is complete, this is almost everywhere.)

Figure 1
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(b) If (x+�N_ �+) & S=< for some normalization _ of N, then
M(x | *, N)=0.

(c) The support of M( } | *, N) lies within the convex hull �S�1 .

With the vector (1, 0)� corresponding to the horizontal, and (0, 1)� to
the vertical, Fig. 1 illustrates (b) and (c) in case S is the set of points
marked by a v and

N=\1 1 2 2
0 0 3 3+.

For any s in S and & in N, the class (s :&) consists of all points in S
collinear with s in the direction &. Each of the directions & in N appears
with multiplicity two, so according to Corollary 3.3, each (s :&) must con-
tain at least three elements. If * is an Nth difference supported on S, then
part (b) of Theorem 3.15 implies that the support of M( } | *, N) is con-
tained in the shaded region, since at any other point one can place a cone
�N_ �+(M) not intersecting S. This region is a subset of the convex hull
�S�1 , as promised by part (c).

Proof of Theorem 3.15. Since both N and N_ are directional matrices,
and since * is both an Nth and an N_ th difference, Lemma 3.14 implies

|
U

M( } | *, N) DN f=|
U

M( } | *, N_) DN_ f

=|
U

M( } | *, N_) `
N

_(&) DN f

for every f in CN(U). Lemma 3.12 guarantees that, by choosing f in CN(U)
wisely, DN f can be made equal to any nonnegative hat function with
compact support in U. Therefore the functions M( } | *, N) and
M( } | *, N_) > _(&) must agree at any points within U at which both func-
tions are continuous.

If W is any closed disk containing U, then f # CN(W) and DN f=0 on
W implies *f=0, so we can replace U by W is all our conclusions. Thus
M( } | *, N) agrees with M( } | *, N_) > _(&) at all points of continuity
within any closed disk W#U, and therefore these functions are identical
anywhere they both are continuous in Rd. (The parenthetical remark in
part (a) refers to the fact that TN is piecewise continuous when N spans
Rd.) This completes the proof of (a).

Since the support of TN_ is �N_ � + , the support of M( } | *, N_) lies
within S&�N_ �+. This set does not contain x by hypothesis, so
M(x | *, N)=0, proving (b).
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To see that supp M/�S�1 , let x lie outside �S� 1 , and consider the set
of all # # Rd satisfying #�x>#�s for all s # S. By the Separation Corollary,
this set is nonempty, and since it is open, it has positive measure. Those #
for which #�&=0 for some & # N form a set of measure zero, so there exists
# satisfying #�x>#�s for every s and #�&{0 for every &.

Let _(&) :=sign(#�&). Then #�} is positive on N_ , so _ is a normalization
of N. Furthermore,

min(#�(x+�N_ �+))=#�x>max(#�S),

implying that (x+�N_ �+) & S is empty. By part (b), M(x | *, N)=0,
proving (c). K

One consequence of Theorem 3.15 is that, since the convex hull �S�1 lies
within U, the domain of integration in Lemma 3.14 completely contains the
support of M. We summarize this in the following corollary (interpreting
the integral below as one over either the support of M or the domain
of f ).

Corollary 3.16. If f is in CN(U), then

*f=|
Rd

M( } | *, N) DN f.

We can extend these results to the case that N is not complete by using
part (b) of Theorem 3.2.

Corollary 3.17. Let N be a (not necessarily complete) directional
matrix, and let * be an Nth difference with support S. If f is in CN(U), then

*f=(M( } | *, N), DN f)

The inner product above is a sum of integrals over hyperplanes passing
through S parallel to ran N.

It is not necessary that M be nonnegative. For example, if d=1 and
DN=(d�dx), then * :=$0&2$1+$3 is an Nth difference, and its represen-
ter is the piecewise constant function

M(t | *, N)={&1
1

if 0<t<1;
if 1<t<3.
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4. Properties of Nth Differences and Their Representers

When exactly d distinct directions appear in the complete directional
matrix N, an Nth difference is little more than a tensor product divided
difference. The next theorem states this specifically.

Theorem 4.1. Let N be a complete directional d_m matrix containing
exactly d distinct elements. Then, after a linear change of variables, any Nth
difference can be written as a linear combination of tensor product Nth
divided differences.

Proof. We will first prove this in case the distinct vectors of N form the
standard orthonormal basis for Rd. Denote by :( j) the multiplicity of the
jth vector in this basis. Then DN=D:.

Let * be an Nth difference with support contained in a finite set S. Add
points to S as necessary so that it has the form

S=[s: \j, s( j) # [s0, j , s1, j , ..., s;( j), j]].

For every multiindex #�;, let s# denote the point

s# :=(s#(1), 1 , s#(2), 2 , ..., s#(d ), d)�

in S. For #�:, let $# be the tensor product divided difference

$# :=}[s#( j)&:( j), j , ..., s#( j)&1, j , s#( j), j].

Then $# is an Nth difference.
Subtract c; $; from *, where the scalar c; is chosen so that *&c;$; is

supported in S"s; . From this functional subtract, for every # satisfying
:�#�; and #{;, a scalar multiple of $# so that the resulting Nth
difference

*&:
#

c#$# (4.2)

is supported entirely in

T :=S"[s# : :�#�;].

This set ``contains its shadow,'' meaning that if s# # T and if { is a multi-
index less than or equal to #, then s{ # T. It is known that, for any function
f, there is a polynomial in 6N agreeing with f on T. (In fact, one can
always interpolate uniquely from the space

ran[( } ){ : s{ # T],
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where ( } ){ is the {th monomial [12].) Consequently, 6N(T)=RT. By
Theorem 3.5, the functional (4.2) is identically zero, proving the theorem in
this special case.

More generally, let K be the set of distinct elements in N. Then K is
invertible, and the functional

*� : f [ *( f b K&1)

is a (K&1N)th difference. By the special case already proven, *� =� c#$# ,
where each $# is a tensor product divided difference. But then *=� c#$� # ,
where

$� # : f [ $#( f b K),

finishing the proof. K

Using the above proof, we'll now see that the converse of Corollary 3.3
is false.

Let

S :=[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 3),

(2, 0), (2, 2), (2, 3), (4, 1), (4, 2), (4, 3)]

and

N :=\1 1 0 0
0 0 1 1+ .

Then *(s :&)>:(&) for every s and &. Suppose that * is an Nth difference
supported on S. According to the proof of Theorem 4.1, there exist con-
stants ci, j so that

*=c0, 0[0, 1, 2]� [0, 1, 2]

+c1, 0[1, 2, 4]� [0, 1, 2]

+c0, 1[0, 1, 2]� [1, 2, 3]

+c1, 1[1, 2, 4]� [1, 2, 3].

Of the four tensor product divided differences above, only the second has
support at the point (4, 0). Since the coefficient *(4, 0)=0, this forces
c1, 0=0. Similarly, c0, 1 must also be zero, since *(0, 3)=0. The first of these
four has the same (nonzero) coefficient at (1, 2) as it does at (2, 1).
However, the fourth has two different coefficients at (1, 2) and (2, 1).
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Figure 2

Hence the conditions *(1, 2)=*(2, 1)=0 lead to an invertible homo-
geneous system in c0, 0 and c1, 1 , forcing c0, 0=c1, 1=0. Thus there are no
(nontrivial) Nth differences supported on S.

When the complete directional matrix N contains more than d distinct
elements, an analogue of Theorem 4.1 is unknown, although one can
generalize the tensor product B-spline and divided difference as follows.

Let N # Dd_m be complete, and let K be the set of distinct elements of
N. Let M :

K be a tensor product B-spline defined on RK, having degree
:(})&1 in the }th variable, and let $: be the associated tensor product
divided difference. Then

|
RK

M:
K D:f=$:f

for f in C:(RK). Define

*: CN(Rd) � R: f [ |
RK

M :
K(DN f ) b K.

Clearly, *p=0 if p # 6N ; since

*f=|
RK

M:
K D:( f b K)=$:( f b K),

* is a linear combination of finitely many point evaluations. Theorem 3.5
therefore guarantees that * is an Nth difference.

Figure 2 shows the two-dimensional support and grid lines of such a
bivariate spline; Figure 3 is its three-dimensional plot.

One can view the identity

|
RK

M:
K(x)(DN f )(Kx) dx=|

Rd
M(t | *, N) DN f (t) dt (4.3)
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Figure 3

as saying that M( } | *, N) is defined to be a d-variate density function
associated, via the linear map K, to a tensor product B-spline M:

K of
*K�d variables. (This has much in common with other instances
throughout spline theory in which a function of several variables is used to
define a function of fewer variables via an onto map such as K.) If K is the
d_d identity matrix, then * and M( } | *, N) are simply a tensor product
divided difference and B-spline. If, for every } in K, the knots of M:

K in the
}th variable are equidistant, then the representer M( } | *, N) is a box
spline. That is, in addition to its standard definition (4.5) as a density
associated to the characteristic function of a cube, the *K-directional box
spline can be seen as in (4.3) as a density associated with a tensor product
cardinal B-spline of *K variables.

Define the forward difference operator {& by {& : f [ f ( }+&)&f, and
{N :=> {& . Then

{N f=:
Z

N
+

{N(;) f ( }+N;) (4.4)

where {N(0)=(&1)*N and {N(;)=0 for all but finitely many multiin-
dices ;. The box spline BN is defined by its action on test functions:

(BN , ,) :=|
[0, 1]N

,(Nt) dt. (4.5)

A well-known property of the box spline is that, for sufficiently smooth f,

| BN DN f={N f (0)

306 THOMAS KUNKLE



File: 640J 291418 . By:CV . Date:30:01:00 . Time:10:48 LOP8M. V8.0. Page 01:01
Codes: 2606 Signs: 1480 . Length: 45 pic 0 pts, 190 mm

[3]. To be specific, polynomials meet the smoothness conditions, so
Theorem 3.5 implies that the functional $0 {N : f [ {N f (0) is an Nth
difference, and since its representer is unique, M( } | *, N) and BN are iden-
tical. In particular, if N # Dd_m, then

BN(t)=$0 {NTN( }&t)= :
ZN

+

{N(;) TN(N;&t) (4.6)

(a known result, stated here for later reference).
A known property of the box spline [3] holds for any representer of an

Nth difference.

Lemma 4.7. If N is a directional matrix, if * is an Nth difference, and
if s is an extreme point of supp *, then, in some neighborhood of s, the spline
M( } | *, N) agrees with a scalar multiple of TN_(s& } ) for some normaliza-
tion _ of N.

Proof. By Theorem 3.2, part (b), it will suffice to prove this in case N
is complete.

If s is an extreme point of S :=supp *, then, as in the proof of Theorem
3.15, there is a # in Rd such that

#�s>B :=max #�(S"s)

and #�&{0 for all & # N. Let _(&) :=sign(#�&), so that N_ satisfies (3.9). By
Theorem 3.15, part (a),

M( } | *, N)=M( } | *, N_) `
N

_(&),

so that, up to a scalar factor, M( } | *, N) equals

*(s) TN_(s&} )+ :
S"s

*(t) TN_(t&} ). (4.8)

The set

V :=[x: #�x>B]

is the desired neighborhood of s: since #� } �B on supp TN_(t&} ) for
t # S"s, (4.8) reduces to *(s) TN_(s&} ) on V, completing the proof. K

If N is a complete directional matrix, the integral of M( } | *, N) can be
computed as follows.

Take a basis K/N, and choose t such that the support of M( } | *, N)
lies within the cone t+�K�+. Then by (3.10),

|
Rd

M( } | *, N)=|det K| |
Rd

TK(x&t) M(x | *, N) dx.
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By Definition 3.13, this is

|det K| : *(s) |
Rd

TK(x&t) TN(s&x) dx,

so that, by (3.11),

|
Rd

M( } | *, N)=|det K| *TN _ K( }&t). (4.9)

Thus, to compute the integral of M one can use the known recurrence rela-
tions for T [6]. (The derivation of (4.9) is similar to Dahmen and
Michelli's calculation of a convolution [8, (3.5)] useful in finding the inner
product of multivariate B-splines.)

If * is a (N _ K)th difference as well as an Nth difference, then the right
side of (4.9) is M(t | *, N _ K), which, for t sufficiently large, equals zero.
Thus �Rd M( } | *, N)=0. This is generalized by the next theorem.

Theorem 4.10. Let K be a matrix of linearly independent vectors con-
taining '. Let N and N _ ' be complete directional matrices, and let * be a
N _ ' difference. Then, for every x # Rd,

|
RK

M(x+Kt | *, N) dt=0.

Proof. Note that M( } | *, N) exists since, by Corollary 3.6, * is an Nth
difference.

We begin with the claim that

\x # Rd, |
�

&�
M(x+'t | *, N) dt=0. (4.11)

Replace the given x by x+'s, where the scalar s is chosen so that

(x&�N _ '�+) & S=<.

The integral in (4.11) is unaffected by this change.
With _#&1, Theorem 3.15, part (b), implies that M(x | *, N _ ')=0.

Thus

0=: *(s)(T' V TN)(s&x)=|
�

0
: *(s) TN(s&x&'t) dt

=|
�

0
M(x+'t | *, N) dt.
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If t<0, then

(x+'t&�N�+) & S=<,

so that M(x+'t | *, N)=0. The claim (4.11) follows.
By Fubini's theorem, the integral in Theorem 4.10 is

|
[0, �)K"' |

�

&�
M(x+(K"')s+'t) dt ds,

and, by (4.11), this is zero. K

Corollary 4.12. Let N and N _ ' be complete directional matrices and
let * be a (N _ ')th difference. Then

|
Rd

M( } | *, N)=0.

Proof. Complete ' to a basis K of Rd. K

We shall say that the Nth difference * is affine if � M( } | *, N)=1. It will
be shown that the affine Nth differences are useful in approximating DN f.

The following result generalizes (1.6).

Lemma 4.13. Let N be a complete directional matrix, and let * be an
affine Nth difference. If M( } | *, N) is nonnegative and has connected
support, then for every f # CN(U) there exists ! # supp M such that

*f=DN f (!).

Proof. Since M�0 and � M=1, Corollary 3.16 implies that *f lies
between the maximum and minimum of DN f over the support of M.
Therefore each of the disjoint open sets

[x: DN f (x)>*f ] and [x: DN f (x)<*f ]

has nonempty intersection with supp M. Since supp M is connected, there
exists some point ! in supp M which does not lie in either of these sets, as
desired. K

The next results show that an affine Nth difference can approximate DN

without the restriction that its representer be nonnegative.

Lemma 4.14. Let N # Dd_m be complete and let * be an affine Nth
difference. For h>0, define

*h : f [ h&m*f ( }h).
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If f # CN(N� ) for some neighborhood N of the origin, and if |N is the
modulus of continuity of DN f on N� , then

|*h f&DN f (0)|�c|N(h)

for sufficiently small h and for some c depending only on *.

Proof. Because � M( } | *, N)=1 and DN f ( }h)=hm(DN f )( }h), we have

*h f&DN f (0)=|
Rd

M(t | *, N)[(DN) f (th)&DN f (0)] dt.

Letting & }& denote the Euclidean norm in Rd, the absolute value of the
above cannot exceed

max[|N(&th&): t # supp M] |
Rd

|M|.

The proof is completed by taking an integer n such that &t&�n for all
t # supp M and by using |N(nh)�n|N(h) [16]. K

Using shifts, one can similarly use * to approximate DN f (x) for x other
than zero.

The next theorem shows that this convergence can be accelerated using
centered affine Nth differences.

Theorem 4.15. Let N # Dd_m be complete and let * be an affine Nth
difference. Define ! # Rd by

! :=|
Rd

M(t | *, N) t dt;

for h positive, define

*!
h : f [ h&m*f (!+( }&!) h).

If DN f # C2(N� ) for some neighborhood N of !, then

|*!
h f&DN f (!)|=O(h2).

Proof. Restrict h so that supp *!
h /N.

As in the proof of Lemma 4.14, we have

*!
h f&DN f (!)=|

Rd
M(t | *, N)[(DN f )(!+(t&!) h)&DN f (!)] dt.
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Using the smoothness of DN f, and letting ``grad'' denote the gradient
operator, the above can be rewritten as

|
Rd

M(t | *, N)(grad DNf (!))� (t&!) h dt

+O(max[&(t&!) h&2: t # supp M]).

The integral above is zero by the choice of !, and the second term equals
O(h2), as desired. K

Lemma 4.14 and Theorem 4.15 has immediate extensions to the case that
N is not complete.

Given a continuous function h of compact support, there might not exist
a compactly supported Nth antiderivative of h, since that would require
that h have integral 0 over Rd. In the following corollary to Lemma 3.12,
we construct a compactly supported function whose Nth derivative agrees
with h on a cone.

Lemma 4.16. Let x # Rd and let h be any continuous function of compact
support. If N is directional matrix, then there exists f # CN

c (Rd) such that
h( y)=DN f ( y) for all y # x+�N�+.

Proof. Without loss of generality, x=0. By replacing N by aN for a
large positive scalar a, we may also assume that

(�N�++&) & supp h=< (4.17)

for every & in N.
Define f :=(&1)*N TN V ({Nh). Then, by Lemma 3.12, DN f=

(&1)*N {Nh, and, by (4.4) and (4.17), (&1)*N {N h and h are identical on
�N�+.

Lemma 3.12 guarantees that f # CN(Rd). We need only show that f has
compact support.

By its definition,

f (t)=(TN(t&} ), {N h)

=�TN(t&} ), :
ZN

+

{N(;) h( }+N;)�
=�:

Z
N
+

{N(;) TN(t& } +N;), h� .
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By (4.6), this is

(BN( }&t), h).

Since BN and h are of compact support, this is zero for sufficiently large t,
completing the proof. K

Like Theorem 3.5, the next result characterizes the Nth differences.

Theorem 4.18. Let N # Dd_m and let * be a linear combination of
finitely many point evaluations with support S. Then * is an Nth difference
if and only if *| (s :&) is a &:(&)th difference for every & in N and s in S.

Proof. Half of this theorem is proven in Theorem 3.2, part (a). It
remains to prove the converse.

Assume that * | (s :&) is a &:(&)th difference for every & and s. The proof that
* is an Nth difference is by induction on the number of distinct elements
in N, the simplest case being trivial. Assume that the result is known for
directional matrices having fewer distinct elements than N, and let } and
' be different members of N. Define K :=N"':(') and H :=N"}:(}). By the
induction hypothesis, * is both a Kth and an Hth difference. Therefore,
by Corollary 3.17, there exist distributions MK(t) :=*TK( }&t) and
MH(t) :=*TH( }&t), supported on �S�1 , so that

*f=(DK f, MK) =(DH f, MH)

for any f in C N
c (Rd). Integrating by parts,

(&1):(') (DN f, MK V T':('))=(&1):(}) (DN f, MH V T}:(})) .

The convolution on the left is supported on �S�1+�'�+; the one on the
right is supported on �S�1+�}�+. Thus the supports of both are con-
tained in x+�N�+ for some x # Rd.

Corollary 4.16 guarantees that, by choosing f in CN
c (Rd) correctly, the

restriction of DN f to x+�N�+ can be made equal to any hat function with
small support. It follows that, in the distributional sense,

(&1):(') MK V T':(')=(&1):(}) MH V T}:(})=: MN ,

and that this distribution is supported on the compact set �S� 1+�}�+ &

�S�1+�'� +.
To show that * is an Nth difference, let p # 6N , and let f # C �

c (Rd) agree
with p on an open disk containing S and supp MN . Then *p=*f=
(DN f, MN)=0. By Theorem 3.5, * is an Nth difference, completing the
inductive step. K
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Corollary 4.19. Let S be a finite set in Rd and let H be the set of
distinct elements from the directional matrix N. Then

6N(S)=:
H

6&:(&)(S).

That is, if f is a function defined on S, then there exists a polynomial in
6N agreeing with f on S if and only if there exist polynomials p& in 6&:(&)

such that � p& agrees with f on S.

Proof. Clearly, 6N(S)#� 6&:(&)(S).
Since both spaces are finite-dimensional, it will suffice to show that, if *

is a linear functional on RS that vanishes on � 6&:(&)(S), then * also
vanishes on 6N(S).

Since 6}:(}) /� 6&:(&) for every } in H, if * = � 6&:(&)(S), then
* = 6}:(})(S). By Theorem 3.5 and 4.18, * = 6N(S). K

Given a set S satisfying the necessary condition of Corollary 3.3, one can
search for the Nth differences supported on S as follows.

By Theorems 3.5 and 4.18, * is an Nth difference if and only if
* | (s :&) = 6&:(&) . For each s and &, choose a basis Ps

& of the univariate poly-
nomials of degree less than :(&). Then the set

[ p b &�| (s :&) : p # Ps
&]

is a basis for 6&:(&)(s :&). Therefore, for * to be an Nth difference, it is
necessary and sufficient that * annihilate the set of functions

.S, N [( p b &�) /(s :&) : p # Ps
&].

This amounts to a homogeneous system of linear equations to be satisfied
by a nontrivial * in RS. One is left free to choose Ps

& to depend on s so that
this system might be more easily solved.

Note added in proof. For an introduction to a new multivariate divided difference, different
from the topic of this paper, see the recent paper of de Boor [21].
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